

easyLadder
The PLC engine for your Raspberry Pi

HMI library and sample

Contents

1. Introduction ... 3

2. Compiling sample in your Raspberry Pi .. 3

3. PLC communication framework .. 5

4. Screen management framework ... 6

5. Support .. 7

1. INTRODUCTION

When building the easyLadder PLC system, you probably will need some kind of Human

Machine Interface (HMI) to monitor PLC status, operate manual PLC commands, configure

working parameters or manage process data (logging, graphs and so on). For this purpose, you

can use any available industrial HMI providing a MODBUS TCP driver. Nevertheless, when

creating cost-sensitive applications or having special HMI requirements, the best solution is to

develop your own HMI application using a powerful language like C++, executed on the same

Raspberry Pi. Doing so, you get an embedded HMI/PLC system with unlimited possibilities. This

library is provided to help you in this progress.

easyLadderHMI is a library used to build your own HMI application to interface with easyLadder

PLC. Using this library you can easily develop the HMI interface for your PLC program using the

power of the Qt platform and C++ language, without worrying about knowledge of easyLadder

PLC communication internals.

The sample provided is designed for the official Raspberry Pi 7” touch screen, but can be easily

translated to other LCD. In this case, it connects to the local easyLadder engine (127.0.0.1), but

it can also connect to a remote PLC simply changing this IP in the source code.

Using the Qt platform, this library can be compiled in any Linux platform, or even in Windows

machines with small modifications. So it is possible to get your HMI working remotely in any

desktop PC, for example.

2. COMPILING SAMPLE IN YOUR RASPBERRY PI

These instructions will let you to download the library and compile the sample using your

Raspberry Pi with the official Raspbian Jessie (LITE edition can be used, since no X11 is

required). This sample is designed for the official 7” touch screen.

Please note that the optimal development solution is to setup a cross compiler in your desktop

computer, and transfer the compiled target to the Raspberry Pi system. Doing this requires

some time since it is required to compile the Qt from source code, and it is not covered in this

manual. This manual compiles the sample Hmi locally using the Raspberry Pi. There are a

number of tutorials about cross compiling available in Internet.

First, download and extract the library:

A directory called easyLadderHmi with the library and sample files will be generated in your

home directory.

cd

wget http://www.ferrariehijos.com/easyladderhmi.tar

tar -xvf easyladderhmi.tar

http://www.ferrariehijos.com/easyladderhmi.tar

The next step is to install the Qt development package. The official Jessie repository includes a

version of Qt but, at this time, it is not optimized for the Raspberry Pi video hardware, and

requires the use of the X11 windowing system. We will try to install Qt from an alternative

repository (apt.leandog.com). This Qt includes EGLFS support for video acceleration and does

not requires X11.

Follow these instructions to install Qt in your Raspberry Pi:

Now, we are ready to compile the sample:

Once compiled, we can run the sample HMI.

Now you are ready to modify the source code and develop your own HMI application.

sudo ln -s /opt/vc/lib/libEGL.so /usr/lib/arm-linux-gnueabihf/libEGL.so.1.0.0

sudo ln -s /opt/vc/lib/libGLESv2.so /usr/lib/arm-linux-gnueabihf/libGLESv2.so.2.0.0

echo "deb http://apt.leandog.com/ jessie main" | sudo tee --append /etc/apt/sources.list

sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys BDCBFB15

sudo apt-get update

sudo apt-get install -y qt5

cd easyLadderHmi

qmake

make

./easyLadderHmi

3. PLC COMMUNICATION FRAMEWORK

easyLadderHmi communication library is offered as a project include easyLadder.pri, located

in the easyLadder directory. You must include this file in your .pro project. This library contains

all classes needed to interchange information with the easyLadder PLC. All operations are done

in the background using a different thread. You do not need to know details about these

internals to build your program, but source code is provided if you need to modify it according

to your needs.

easyLadder PLC communication is managed through class easyLadderPlc. To start

communications simply create an object with this class and call init function with the IP address

of the PLC. This class provides two signals to monitor the communication engine. Signal

connected (bool Connected) is emitted when connection is stablished (Connected=true) or lost

(Connected=false). Signal refreshEnd () is emitted after each refresh cycle, so you can update

values in the HMI when receiving this signal.

PLC device values are managed through class easyLadderDevice and children of this class:

 easyLadderBitDevice

 easyLadderWordDevice

 easyLadderSignedWordDevice

 easyLadderDwordDevice

 easyLadderSignedDwordDevice

 easyLadderFloatDevice

 easyLadderDeviceBlock

If you need to get a device value, you must create an object of the desired class, according to

the type of device needed, and specify the corresponding PLC object, a friendly device name

and the device name in the PLC (D0, M10, K4M0…), in addition to other optional parameters.

When object is created, value refresh is done automatically in the background. When object is

destroyed, refresh is stopped. PLC refreshing algorithm is intelligent: when you create several

device objects referring to the same PLC device, only one device will be queried to the PLC.

When creating a PLC device object, you can specify additional parameters.

Parameter decimals is provided to manage value display and edition. For example, when using

an easyLadderWordDevice over D0 with decimals parameter to 2, when D0 is 1234, this device

will be displayed and edited as 12.34.

Parameter refreshRatio controls the desired refresh timing for the device. When setting a value

of 0 (default), this variable will be refreshed on every communication scan. When setting a

value of 4, the device will be refreshed skipping 4 scans. A value of -1 indicates manual refresh.

In this case, the device will be refreshed using the function easyLadderDevice::refresh() and

you can query easyLadderDevice::isRefreshed () to know when refresh was accomplished.

4. SCREEN MANAGEMENT FRAMEWORK

easyLadderHmi windowing system is based on class hmiBaseWindow provided by the library,

and your own hmiWindowX classes. The sample includes hmiWindow1 and hmiWindow2 as a

startup point for your own screens. hmiBaseWindow is the only real Window in the system, and

it is the base for all other windows (HMI screens). Generally, you can use this class without any

modification. This window is intended to be blank, so all other windows are created as children

of the hmiBaseWindow and displayed as regular widgets over this blank window base.

In the sample, the hmiBaseWindow is created in the main () function. The hmiBaseWindow

includes the easyLadderPlc object and it is then init (“127.0.0.1”) in the class constructor.

You need to create as many hmiWindowX as needed. Each hmiWindowX represents a HMI

screen, and contains the required number of easyLadderDevice used by the screen. To change

the currently visible screen, you must call BaseWindow->changeToWindow (new

hmiWindowX (Plc, BaseWindow)). Do not care about hmiWindowX destruction, since it is done

for you in the hmiBaseWindow class.

Each hmiWindowX includes all easyLadderDevice as member variables, and easyLadderDevice

constructor parameters are specified in the hmiWindowX constructor (see samples). When

hmiWindowX object is deleted, all devices included in this class will be also deleted, so no

further device refreshing will be done.

To ease device monitoring and editing, some hmiWidget are included in the sample

(hmiwidgets.h). You can use these standard widgets to provide automatic device value

refreshing and editing. Also, you can use these widgets as a startup point for your own widgets.

In order to use these hmiWidget, you must create them in the Qt form editor as a normal Widget

and promote to the desired hmiWidget class. After that, you need to assign the device and

desired working parameters using the hmiWidget::setDevice (…) function in the hmiWindowX

constructor. To refresh all hmiWidget for the current screen you can use the convenient

hmiWidget::refreshAll (this) static function in the slot responding to the refreshEnd () PLC

signal.

Some hmiWidget can be configured to change the StyleSheet depending on the assigned

device value. For example, a hmiLamp widget can show a different image depending on the set

or reset state of the device. You can set these StyleSheet using the function setStyleList. Please

see the sample source code for details about this and other available functions.

To start with your own application, you can delete hmiWindow1 files and use the hmiWindow2

class as a startup skeleton for your own screens. You can copy hmiWindow2.h,

hmiWindow2.cpp and hmiWindow2.ui files as hmiWindowX.h, hmiWindowX.cpp and

hmiWindowX.ui to begin your own HMI project.

5. SUPPORT

For support contact info@ferrariehijos.com or http://www.ferrariehijos.com/easyLadder.

mailto:info@ferrariehijos.com
http://www.ferrariehijos.com/easyLadder

Copyright © 2017 Ferrari e hijos, s.a. - version 1705.01

ferrari e hijos, s.a.

http://www.ferrariehijos.com/easyLadder

info@ferrariehijos.com

